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J. Phys. A: Math. Gen. 18 (1985) 2115-2121. Printed in Great Britain 

Probability current versus charge current of a relativistic 
particle? 

B Rosenstein and L P Horwitz 
School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel 

Received 8 August 1984 

Abstract. Newton and Wigner found the probability density of detecting a relativistic 
particle in some point in space. This probability density must, however, be the zero 
component of the same vector field. This (unique) vector field-the probability current-is 
constructed and discussed. 

1. Introduction 

In this paper we shall be concerned (for the sake of simplicity) with the description 
of a free, relativistic spinless particle. Such a particle is described in quantum field 
theory by a vector belonging to the one-particle sector ~ ‘ )  of the Fock space [3]. The 
subspace @ I ’  is spanned by the basis elements 

Ik) = a:lo) ( 1 )  

in the momentum representation, where [a,, a:,] = S(k - k’). The state vector at some 
moment t is a vector I+,): 

I + , )  = I dk +(k, w. (2) 

The probability density of detecting the particle (at time t )  with a momentum k is 

P(k, t )  = Iw, ? ) I 2 .  (3) 

The function +(k, t )  will be called the Newton-Wigner-Foldy [ l ,  21 (NWF) wavefunc- 
tion; it is the relativistic analogue of the Schrodinger wavefunction in the momentum 
representation. The function +( k, t )  is normalised by 

dkl+(k, ? ) I 2 =  1. (4) I 
The evolution in time is governed by the Hamiltonian 

H = dk wka:Uk I 
where 

wk = ( k 2 +  m2)”2. 

t Supported in part by the Fund for Basic Research administered by the Israeli Academy of Sciences and 
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Therefore in the one-particle sector % I )  the basis vector ( k )  evolves during the time t 
to the vector 

exp(iHt)lk) = exp(iwkt)lk) (7)  

and then the vector described at the time t = 0 by the NWF wavefunction + ( k ,  t = 0) 
changes during the time t to 

+(k,  t )  =exp(-iWkt)+(k, 0). (8) 

i(a/dt)$(k, f )  = Wk$(k, 1 )  = ( k 2 +  Tt12)1'21,!J(k, f). ( 9 )  

The equations of that type were derived (in a different way) by Foldy [2] and will 
be called Foldy equations. They are the relativistic analogues of the Schrodinger 
equation. Now let us go to the coordinate representation. In place of the basic elements 
( k )  there are the basic elements 

Therefore the equation of motion is 

lx)= 5 dk exp(ik. x ) l k )  

and in place of the NWF wavefunction + ( k ,  t )  there is +(x, t )  

+ ( x , t ) = j  dkexp(ik.x)+(k, t )  

so that 

13,) = 5 dk 3 ( k ,  t ) l k )  = dx +(x, t ) lx ) .  5 
The states lx) are the Newton-Wigner 'localised' states [I]. The probability density to 
find a particle at the point x is 

(13) P ( X ,  t )  = i+k t)i2. 

The Foldy equation (9) in x-representation is non-local, i.e., 

i(a/at)+(x, t)  = (-V2+m2)'"+(x, 1) = dyK(x-y)+(y,  t )  (14) I 
where 

K ( x ) =  dk e x p ( i k . ~ ) ( k * + m ~ ) " ~ ,  5 
The probability density p ( x ,  t )  is the zero component of a vector field J, [4]. Our goal 
is to find three other components of this vector field. 

2. The derivation of the probability 4-current 

We know p ( x ,  t )  = J o ( x ,  t )  in any frame of reference. J , ( x )  transforms under any 
Lorentz transformation A as a vector field 

JL(Ax) = A,"J,(x). (15)  
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The NWF wavefunction +(x, t )  does not have a simple Lorentz transformation, but the 
function 

~ ( x ) = w - ’ ! ~ + ( x ) =  I dyK-’/2(X-y)+(y, t ) ,  (16) 

where K a  = dx w a  exp(ik - x), is a scalar [4], i.e., 

&’(Ax) = 4(x) .  

The expression of J o ( x )  in terms of 4 ( x )  is 

The equation (1 5) for the infinitesimal pure boast 

Aoo=1, Aot = -vj,  A,o=  -I),, AV = a,, (19) 

J h ( x -  ut, t - ux) = Jo(x, t )  - d ( x ,  t ) .  (20) 

and for p = 0 in (15) takes the form 

We expand the left-hand side of (20) in the small parameter U: 

JA(x - ut, t - ux) 
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3. Comparison with the charge current 

In the one-particle state I $ )  the charge current operator 

where 4 is a scalar field operator, and we have indicated normal ordering, has the 
expectation value 

-- -- 
j (  x) = 44*( k”)4 = $(I,*( w - ’ ” ) (  k /  w ”’)(I, + (I,*( k /  w w -”*) $. 

The quantity is called the charge current (clearly not proportional to the probability 
current). The function j ,  is normalised to 1 when $ is normalised 

The only states for which the probability current is equal to the charge current are 
plane waves. For other one-particle states, the two types of currents are different. An 
interesting feature of the charge density of one positively charged particle is that in 
spite of the normalisation (26) it may be negative in some regions. On the other hand, 
the probability density Jo(x,  t )  is obviously positive everywhere. Another feature is 
that j ,  obeys the continuity equation 

The probability current has the property 
c_ c- - -  

J,J@ = $[m2( +*( 1 / w (I, + (I,*( k ,  ) (  k , / w  )(I, + $*( k,/ ) ( k ,  1411 + 0. (28) 

The conservation of the number of particles (equal to 1 in our  case), of course, 
is satisfied globally by Jo(x),  but this is not enough to imply the local continuity 
equation. It is always possible to find many 3-vectors J ( x ,  t )  that satisfy 

( a / a t ) J ,  = V J  (29) 
but these J cannot in general be a part of a 4-vector, and therefore have no covariant 
meaning. 

4. Interpretation of the probability current 

As we have seen, probability current is not divergenceless. Let us find the restrictions 
on the divergence following from the conservation of number of particles. 

Since J ,  is formed of wavefunctions which are square integrable in space, 

d3x n(x,  t ) =  d3x a,J”(x, t ) =  (slat) d3xJ0(x, t )  . I I [I I 
The integral on J o  is, however, the total probability of finding the particle, and hence 
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is normalised to 1 at any t. This implies that 

d3x R(x, t )  = 0. (31) 

The invariance implies that the integral of n(x ,  t )  over any space like plane U should 
also vanish. As a consequence of (31) and of the fact that J o =  0 at x +  03 we can state 
that the four-dimensional integral of R over the four-dimensional volume between two 
space-like surfaces U ,  and u2 is zero: 

5 

j: d4x R = 1: d4x a,Jp = J o  - 1,; J o  = 0. 

In particular the integral of R over whole spacetime vanishes. 

of the ‘Lorentzian’ wavepacket (see figure 1 )  
As an illustration of the construction of such a function R, consider the evolution 

(33) 1/2  3 /2  $o(x)=(2/.sr) Yo  / ( Y i + X 2 )  

in one space dimension and in the ultrarelativistic regime 

m <( 1/ yo. 

The Fourier transform of $o(x) is 

(34) 

$ ~ ( k )  = YhI2 exp(-y/kl). (35) 

Axhp = 2-‘/’h. (36) 

The indeterminacy of the Lorentzian wavepacket is 

Now we can calculate (neglecting mass m )  the wavefunction at any time according to 
(8) and ( 1 1 )  

where 

y =  yo-it. 

The probability density J o  and probability current J ’  are 

J O = -  2 YOYY* 
.sr (y2+x2)(y*2+xZ) 

2 tx(yy*)’I2 
7r ( y2 + x2)( y*2 + x’) . 

J ’ = -  

The wavepacket spreads inside the light 

(39) 

(40) 

cone as shown in figure 1. The divergence is 

2 t [ - ~ ~ + 2 ~ ~ t ’ + 6 ~ ~ - ( 1 +  t 2 ) 2 ]  a=- 
7r (y2+ x2)2( y*2 + x 2 y  

The regions of R > 1 and R < -1 on the spacetime map are shown on figure 2. 
From the point of view of spacetime, the divergence of a current 4-vector corre- 

sponds to the source for which the current is the flux J p .  As in the Poisson equation, 
V E  = p, one could consider the flux to be a static field strength. However, because of 
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Figure 1. The change in probability density of relativistic particle with time. 

Figure 2. The spacetime localisation of 0. 

the physical nature of the current, it is natural to consider it as a flow of events in 
spacetime, with source corresponding to the rate of increase in the density of events 
locally. 

5. The non-relativistic limit 

In the non-relativistic limit the probability density and the charge density coincide. 
The Schrodinger wavefunction $nr(x, t )  is NWF wavefunction, but for convenience an 
immeasurable phase is introduced 

$,,(x, t )  = lim exp(imc't)$(x, t )  (42) 
C - i u  

to simplify the equations. The equation (14) in the non-relativistic limit becomes the 



Probability current versus charge current of a relativistic particle 2121 

Schrodinger equation 

a 
i -+CL,, = [ ( -v2c2+ m2c4)l12- mc2]+nr= - ( ~ ~ / 2 m ) + ~ , + 0 (  1/c2). (43) 

a t  

The probability density is 

J o = I ~ ~ l ~ = ( + n r ) ~  

and the charge density is -- I_ -  

j o = ~ + * ( w - ” 2 ) ( w ” 2 ) + +  +*(w112)(w-”’)~] 

= 1+12+o(l/c2). 

Therefore, 

j o  = j0+ O( 1/c2). 

Let us now study j and J. 
The non-relativistic limit of j is the well known quantity called ‘probability current’ 

(47) 

in the textbooks 

j = fc[ +*( C O - ” ~ ) (  k /  w ‘ I 2 )  $ + $*( k /  w ‘ I 2 ) (  w-’”)+] = -(i/2m)+*V + + O( 1/ c’). 

The continuity equation for j,, is preserved in the non-relativistic limit. 

-- -- 

On the other hand, J ( x )  is 

J =tc[+*(=)++ +*(@)+I = - ( i /2m)+*V4+0(1jc2)  (48) 

and is therefore identical to j ( x ) .  In this limit, then, the probability current becomes 
divergenceless as well, as is clear from (27). The non-vanishing of the divergence of 
the relativistic probability current is, therefore, a purely relativistic effect. 

6. Conclusion 

The probability density for the detection of particles, represented in the one-particle 
sector of quantum field theory by Newton-Wigner-Foldy wavefunctions, can be com- 
pleted covariantly to a 4-vector. This probability current does not coincide with the 
(not everywhere positive) charge current. It is, in fact, not divergenceless. In the 
non-relativistic limit, the two currents coincide, and the probability current becomes 
divergenceless. The non-vanishing divergence of the relativistic probability current is 
therefore a relativistic effect. 
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